Comparison of algorithms for multi-objective optimization of radio technical device characteristics

نویسندگان

چکیده

Objectives. The selection of a method for solving multi-objective optimization problems has many practical applications in diverse fields. present work compares the results applying different methods to selected classes by solution quality, time consumption, and various other criteria. Methods. Five related analog digital filters, as well multistep impedance-matching microwave transformers, are considered. One compared algorithms comprises Third Evolution Step Generalized Differential (GDE3) population-based algorithm searching full approximation Pareto set simultaneously, while three minimize scalar objective function find only one element single search cycle: these comprise Multistart Pattern Search (MSPS), Sequential Quadratic Programming (MSSQP) Particle Swarm Optimization (PSO) algorithms. Results. computer experiments demonstrated capability GDE3 solve all considered problems. MSPS PSO showed significantly inferior than two In problem, MSSQP could not be used reach acceptable decisions. problems, MSPS, MSSQP, reached decisions comparable with GDE3. consumption was much greater that MSSQP. Conclusions. may recommended basic Algorithms minimizing obtain several elements set. It is necessary investigate impact landscape features individual quality indices functions on extreme process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Bayesian Optimization Algorithms for Multi-objective Optimization

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of importan...

متن کامل

Multi-objective Optimization of Stirling Heat Engine Using Gray Wolf Optimization Algorithm (TECHNICAL NOTE)

The use of meta-heuristic optimization methods have become quite generic in the past two decades. This paper provides a theoretical investigation to find optimum design parameters of the Stirling heat engines using a recently presented nature-inspired method namely the gray wolf optimization (GWO). This algorithm is utilized for the maximization of the output power/thermal efficiency as well as...

متن کامل

Comparison of Multi-agent Co-operative Co-evolutionary and Evolutionary Algorithms for Multi-objective Portfolio Optimization

Co-evolutionary techniques makes it possible to apply evolutionary algorithms in the cases when it is not possible to formulate explicit fitness function. In the case of social and economic simulations such techniques provide us tools for modeling interactions between social or economic agents—especially when agent-based models of co-evolution are used. In this paper agent-based versions of mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rossijskij tehnologi?eskij žurnal

سال: 2022

ISSN: ['2782-3210', '2500-316X']

DOI: https://doi.org/10.32362/2500-316x-2022-10-6-42-51